城市建筑中中央空调常见节能技术分析

2020-05-01  来自: 武汉金恩机电工程有限公司 浏览次数:808


一、节能潜力与技术背景分析

市场潜力

随着社会经济的高速发展,城市建筑(政府部门、星 级酒店、写字楼、大型商场综合性大楼等)的数量及容量日趋增大。据统计,我国已安装中央空调的建筑物约有7万栋左右,若能全部采用节能技术,保守预估每年可节电约500亿kw.h,节约电费开支约378亿元。由此可见,城市建筑具有巨大的节能潜力。


未来城市

背景分析

中央空调系统的设计一般按建筑物所在地的极端气候条件来计算其大负荷,并以其大冷(热)负荷的1.2-1.5倍确定空调主机的装机容量及空调水系统的供水流量。然而,实际上每年绝大多数中央空调系统在大部分时间是在部分(低)负荷状态下运行,实际空调负荷平均只有设备设计能力的50%左右,因此出现了“大马拉小车”的现象,不但浪费大量能源,而且还带来设备磨损,缩短寿命等一系列问题。

另一方面,城市建筑中央空调负荷具有较大变动性,长期以来,由于季节交替、气候变幻、昼夜轮回、人流量增减(宾馆入住率的变化)及使用场所等各种因素变化的影响,在传统的定流量控制方式,仅依靠人工手段对空调系统进行控制和管理,空调系统的运行不能实现冷媒流量跟随末端负荷的变化而动态调节,势必造成了巨大的能源浪费。

尽管现在许多空调主机已能够根据负荷变化自动随之加载或减载,但与冷冻主机相匹配的冷冻泵、冷却泵却不能跟随负荷的变化自动调节负载,始终在额定功率下运行,仍然造成了输送能量的很大浪费。


中央空调主机系统

二、常见节能技术概况与控制原理

节能技术概况

近年来,随着自动化控制技术的发展,计算机技术和变频技术日趋完善,智能模糊控制技术已被成功引入和应用在中央空调控制领域。与传统的恒温差、恒压差PID调节控制方式不同,中央空调智能模糊控制系统将计算机技术、模糊控制技术、系统集成技术和变频调速技术集合应用于中央空调的系统控制,为用户提供了一个先进的智能化和个性化的中央空调运行管理技术平台,实现了中央空调冷媒流量系统运行的智能模糊控制,在保证空调服务质量的前提下实现了中央空调系统的高效节能运行,可使空调主机节能10%-30%,水泵、风机节能60%-80%(中央空调系统综合节能达20%-40%)。

控制原理

模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的计算机智能控制,尤其适合于中央空调这样复杂的、非线性的和时变性系统的控制。中央空调智能模糊控制系统采用了模糊预测算法对冷冻水系统进行控制,当环境温度、空调末端负荷发生变化时,各路冷冻水供回水温度、温差、压差和流量亦随之变化,流量计、压差传感器和温度传感器将检测到的这些参数送至模糊控制器,模糊控制器依据所采集的实时数据及系统的历史运行数据,实时预测计算出末端空调负荷所需的制冷量,以及各路冷冻水供回水温度、温差、压差和流量的佳值,并以此调节各变频器输出频率,控制冷冻水泵的转速,改变其流量使冷冻水系统的供回水温度、温差、压差和流量运行在模糊控制器给出的优值。

系统对冷冻水系统采用了输出能量的动态控制,使空调主机冷媒流量跟随末端负荷的需求供应,使空调系统在各种负荷情况下,都能既保证末端用户的舒适性,又大限度地节省了系统的能量消耗。

系统对中央空调冷却水及主机系统采用系统模糊优化的控制方法,当环境温度、空调末端负荷发生变化时,中央空调主机的负荷率将随之变化,系统的佳转换效率也随之变化。模糊控制器在动态预测控制冷媒循环的前提下,依据所采集的空调系统实时数据及系统的历史运行数据,计算出冷却水佳进、出口温度,并与检测到的实际温度进行比较,动态调节冷却水的流量和冷却塔风量,使系统转换效率逼进不同负荷状态下的佳值,保证中央空调系统在各种负荷条件下,均处于佳工作状态,从而实现中央空调系统能耗大限度的降低。


中央空调系统立体模型

三、控制手段

数据的集中监视和设备的自动控制

系统内部实现模糊控制器与各控制柜之间的通信连接,将各水泵的状态、以及中央空调系统中的主要过程参数在统一的软件监视界面上分别显示出来(与用户接口的监控界面为触摸屏操作方式的中文软件界面),进行集中监视。

系统预加压功能

空调主机开机后,冷冻(温)水泵在上位机软件规定的时间内先在允许的最高频率运行,使其至少完成一个水循环周期,然后再进入系统自动调节模式,以保证空调管路中无气阻现象。

冷冻水供水低温保护

当空调主机冷冻水供水温度低于设定的下限值时,一级泵系统的冷冻水泵或二级泵系统的一次冷冻水泵应立即进入低温保护运行模式,快速提高冷冻水供水温度,直至温度值不低于设定的下限值为止,以保障空调主机蒸发器不致因温度过低而结冰冻管。

冷冻水低流量保护

当空调主机冷冻水供水流量低于设定的下限值时,一级泵系统的冷冻水泵或二级泵系统的一次冷冻水泵应立即进入低流量保护运行模式,快速增大冷冻水流量,直至流量值不低于设定的下限值为止,以保障空调主机蒸发器的安全。

冻(温)水供回水低压差保护

当冷冻(温)水供回水压差小于设定的下限值时,系统应自动采取增大冷冻(温)水供回水压差的措施,直至压差值不低于设定的下限值为止,以保障用户空调末端的空调效果。

冷冻(温)水供回水高压差保护

当冷冻(温)水供回水压差大于设定的上限值时,系统应自动采用减小冷冻(温)水供回水压差的措施,直至压差值不高于设定的上限值为止,以保障管路系统的安全。

冷却水出水高温保护

当空调主机冷却水的出水温度高于其设定的上限值时,系统应自动采取措施,降低冷却水的出水温度,直到冷却水出水温度不高于设定的上限值为止,以保障主机安全运行。

工变频切换

当控制系统故障后,为了保证空调系统的正常使用,智能控制柜中设置有一套电气互锁的工变频转换装置。当需作能耗比较测试或变频器因严重故障短时间内不能恢复或置换时,可方便快捷地切换为原工频状态运行。


中央空调系统模型

总结

随着国内的城市综合体、酒店、综合大楼等城市建筑的大量兴建,中央空调能耗已成为城市建筑设计和运营过程中亟待解决的重要课题。新型商业模式和先进节能技术的成功引入和推广,为各行业客户带来巨大的节能经济收益和社会效益,同时也必将推动我国节能投资机制的深入变革,为节能产品在建筑节能领域的推广和应用提供良好的发展前景。


关键词: 中中央空